Degrees of Separation, Social Learning, and the Evolution of Cooperation in a Small-World Network

نویسندگان

  • Nicholas Seltzer
  • Oleg Smirnov
چکیده

We analyze a novel agent-based model of a social network in which agents make contributions to others conditional upon the social distance, which we measure in terms of the “degrees of separation” between the two players. On the basis of a simple imitation model, the emerging strategy profile is characterized by high levels of cooperation with those who are directly connected to the agent and lower but positive levels of cooperation with those who are indirectly connected to the agent. Increasing maximum interaction distance decreases cooperation with close neighbors but increases cooperation with distant neighbors for a net negative effect. On the other hand, allowing agents to learn and imitate socially distant neighbors increases cooperation for all types of interaction. Combining greater interaction distance with greater learning distance leads to a positive change in the total social welfare produced by the agents’ contributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Analysis the position of stakeholders toward to water governance in Taleghan watershed

The lack of a comprehensive system for identifying the role and understanding of the structural relationships of local water users in the local stakeholder’s network is one of the most important challenges for the integrated management of water resources and the governance perspective. Thus, identifying and analyzing canyons, as the most important element of planning and implementing activities...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

An Examination of the Effect of Social dimensions on Peoples’ use of Urban Public Spaces (Case study: Chamran Recreational Site of Shiraz Located Between Shahidan Sheikhi and Niayesh Bridge)

Space and society are clearly interrelated in such a way that conceiving of the former without the latter as well as understanding society without its spatial components is impossible. Public urban spaces provide the grounds for citizens' social interactions and communication. More importantly, active presence of people in these areas promotes levels of social interaction, sense of cooperation ...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Artificial Societies and Social Simulation

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2015